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Stochastic Ornstein–Uhlenbeck Capacitors
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We introduce and study a class of random capacitor systems which are both
charged and discharged stochastically. A capacitor is ‘fed’ by a random inflow
with stationary and independent increments. Discharging occurs according to
a Markovian rate which is linear in the capacitor’s level. The resulting capac-
itor dynamics are Markovian, stochastically cyclic, and regenerative. We coin
these systems “Lévy-charged Ornstein–Uhlenbeck capacitors”. Various random
quantities associated with these systems are analyzed, including: the time-to-
discharge; the duration of the charging cycle; the trajectory and the peak height
of the capacitor level during a charging cycle; and, the capacitor’s station-
ary equilibrium level. Furthermore, we show that there are sharp distinctions
between these capacitor systems and corresponding ‘standard’ Lévy-driven
Ornstein–Uhlenbeck systems.
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1. INTRODUCTION

In this manuscript, we introduce and analyze a theoretical model of
random capacitor systems where both their charging and discharging
mechanisms are stochastic. Let us first describe the model and then spec-
ify possible applications.

Consider a stochastic capacitor ‘fed’ continuously by a random
inflow of charge. We define three processes – the capacitor process X =
(X(t))t�0, the charging process L = (L(t))t�0, and the discharge process
D = (D(t))t�0 – as follows
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• Capacitor process: X(t) is the level, at time t , of the capacitor. The
capacitor process X is non-negative valued.

• Charging process: L(t) is the cumulative charge inflow, ‘fed’ into
the capacitor, during the time period [0, t ]. The increments of the charg-
ing process L are non-negative valued.

• Discharge process: D(t) is the number of capacitor discharges that
have occurred during the time period [0, t ]. The discharge process D is
a counting process: it is integer-valued, non-decreasing, and has unit-size
jumps.

All three processes are assumed, with no loss of generality, to start
at the origin (i.e., X(0)=L(0)=D(0)=0). The stochastic dynamics of the
capacitor process X are given by

X(dt)=−X(t)D(dt)+L(dt). (1)

That is: (a) if there is no discharge during the infinitesimal time inter-
val (t, t + dt) then the capacitor level increases by the value L(dt) – the
charge inflow during this time interval; (b) if the capacitor discharges dur-
ing the infinitesimal time interval (t, t +dt) then the capacitor level reduces
from the (pre-discharge) level X(t) to the (post-discharge) level 0.

Rather than exploring ‘standard’ deterministic capacitors – i.e., capac-
itors with fixed threshold levels – we consider the more complicated case
of stochastic capacitors, where discharges occur randomly. To illustrate
random discharges consider the example of a house-of-cards. A house-of-
cards has no a-priori threshold level. Rather, as cards are added to the
house its intrinsic probability of crashing grows larger and larger – until
the inevitable tumble-down finally occurs. Specifically, we assume the ran-
dom discharging mechanism to be governed by a Markovian rate function
r(x): if the capacitor’s level at time t is x then the probability of discharg-
ing during the infinitesimal time interval (t, t +dt) is r(x)dt . This implies
that the discharge process D is given by

D(t)=�

(∫ t

0
r(X(s))ds

)
, (2)

where �= (�(t))t�0 is a standard Poisson process (i.e., a Poisson process
with unit rate), which is independent of the charging process L.

Hence, the stochastic dynamics of a random capacitor system are
given by the pair of Eqs. (1) and (2). The ‘noisy inputs’ to the system are
the charging process L and the Poisson process � – which is the ‘trigger’
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of the discharges. These noisy inputs are independent, but their combined
influence on the resulting capacitor process X is highly convoluted due to
the strong coupling of Eqs. (1) and (2). Presented alternatively, the sto-
chastic dynamics of the capacitor process X are given by the following
transition probabilities

X(t) �−→



X(t)+L(dt) with prob. 1− r(X(t))dt,

0 with prob. r(X(t))dt.

(3)

Possible applications of the random capacitor model are systems
exhibiting stochastic growth-collapse evolutionary cycles. That is, systems
whose temporal evolution is governed by stochastic growth-collapse cycles:
a period of steady growth followed by an abrupt event collapsing/re-set-
ting the system back to its ‘ground level’ (immediately after which a new
growth-collapse cycle commences). Examples include: the house-of-cards
described above; sandpile-type models and systems in self-organized crit-
icality (see ref. 1 and references therein); stick–slip models of interfacial
friction;(2) Burridge–Knopoff type models of earthquakes and continental
drift;(3) and, ‘gazing models’ of human eye movement.(4) See also ref. 5 for
a related study of systems exhibiting stochastic growth-collapse behavior.

The manuscript is organized as follows; in Section 2 we introduce
the notion of Lévy-charged Ornstein–Uhlenbeck capacitor systems, to be
studied and analyzed in subsequent sections. In Section 3 we study the
distribution of the ‘time-to-discharge’. Namely; how long would it take a
capacitor system, initiated from the level x >0, to discharge? In Section 4
we analyze the peaks of the capacitor process, deriving their Laplace trans-
form, mean, and – in the case of heavy-tailed systems – their tail behav-
ior. In Section 5 we study the trajectory of the capacitor process along a
charging cycle, conditioned on the information that the cycle is of specific
length. We conclude, in Section 6, with an analysis of the evolution and
stationary equilibrium behavior of the capacitor process X.

A note about notations
Throughout the manuscript: P(·) is the probability; E[·] is the expec-

tation; P(·|E) is the conditional probability with respect to the event/infor-
mation E ; and E[·|E ] is the conditional probability with respect to the
event/information E .

2. LÉVY-CHARGED ORNSTEIN–UHLENBECK CAPACITORS

In this manuscript we study the class of stochastic capacitor systems
where
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• the charging process L has stationary and independent increments;

• the discharge rate function is linear r(x)=λx, x �0 (λ>0).

This class is henceforth referred to as Lévy-charged Ornstein–
Uhlenbeck capacitors. The term ‘Lévy-charged ’ is due to the fact that the
charging process is a Lévy process (see the explanation below). The term
‘Ornstein–Uhlenbeck’ is due to the fact that discharge rate is linear (in the
system level). Let us elaborate.

2.1. Charge Inflow

The stationarity and independence of the increments of the charging
process L, combined with their non-negativity, implies that the inflow L is
a one-sided Lévy process, or a Lévy subordinator.(6–12)

Being one-sided Lévy, the charging process L admits a Laplace trans-
form of the form (ω�0)

E [exp{−ωL(t)}]= exp{−φ(ω)t} , (4)

where φ(ω), ω � 0, is the process’ characteristic Laplace exponent (see,
e.g., ref. 9). We set �(ω), ω�0, to be the primitive of φ

�(ω)=
∫ ω

0
φ(u)du . (5)

The one-dimensional Laplace transform given in Eq. (4) – of the ran-
dom variable L(t) – extends to the infinite-dimensional Laplace transform
of the entire process L

E
[
exp

{− ∫∞
0 ϕ(t)L(dt)

}]= exp
{− ∫∞

0 φ (ϕ(t)) dt
}

(6)

for any ‘nice’ test function ϕ(t), t � 0 (being the infinite-dimensional
Laplace coordinate).

We give a few examples of one-sided Lévy processes:

1. Deterministic processes: φ(ω) = aω (a > 0) (corresponding to
L(t)≡at).

2. Compound Poisson processes with exponential jumps: φ(ω) =
aω/(ν +ω) (a, ν >0).

3. Gamma processes (Lévy processes with Gamma-distributed incre-
ments): φ(ω)=a ln(1+ω/ν) (a, ν >0).
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4. Selfsimilar processes(13) (‘fractal’ Lévy processes which are invari-
ant under changes of scale): φ(ω)=aωα (a >0, 0<α <1). The increments
of these processes are heavy-tailed3, and have no finite moments.

2.2. Capacitor Dynamics

Equations (1) and (2), in the case of a linear discharge rate, yield the
following stochastic capacitor dynamics

X(dt)=−X(t)D(dt)+L(dt),

D(t)=�
(
λ
∫ t

0 X(s)ds
)

.

(7)

The Lévy inflow L and the Poisson discharge ‘trigger’ � – the system’s
sources of randomness – are independent processes.

Since the charging process L is Lévy, the resulting capacitor process X

is Markov. Furthermore, X is a regenerative process: it regenerates at every
discharge epoch. Indeed, if we denote by τ the capacitor’s first discharge
epoch, then the trajectory of the process X is the concatenation of inde-
pendent and identically distributed copies of the truncated (and monotone
increasing) trajectory {(s,X(s)) |0 � s < τ }. We henceforth refer to these
truncated trajectories as charging cycles; to their duration τ as the cycle
duration; and to their endpoints X(τ−) as the cycle peaks.

2.3. ‘Standard’ vs ‘Capacitor’ Ornstein–Uhlenbeck Dynamics

To conclude this section, let us compare the capacitor dynamics
of Eq. (7) to corresponding ‘standard’ Lévy-driven Ornstein–Uhlenbeck
dynamics. To that end, consider the ‘standard’ Lévy-driven Ornstein–
Uhlenbeck system Y = (Y (t))t�0 governed by the stochastic dynamics

Y (dt)=−λY (t)dt +L(dt). (8)

Both the dynamics given in Eqs. (7) and (8) are: (i) Markovian and tak-
ing place on the non-negative half-line; (ii) driven by the one-sided Lévy
inflow L which is ‘fed’ additively and is ‘pushing’ the systems towards
+∞; (iii) subject to a retrieving force ‘pushing’ the systems back towards
the origin 0.

3That is; if L is α-selfsimilar then the probability tails of its increments decay algebraically
following a power-law of order α.
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In the dynamics (7) the rate, at time t , of the retrieving force is
λX(t). In the dynamics (8) the magnitude, at time t , of the retrieving force
(the system’s ‘drift’) is λY (t). Hence, in both systems the intensity of the
retrieving forces is linear (with coefficient λ) in the system’s level. How-
ever, the mechanism of the retrieving forces is fundamentally different: in
the ‘standard’ dynamics (8) the force acts continuously – pushing the sys-
tem smoothly towards the origin, whereas in the capacitor dynamics (7) the
force acts discontinuously – pushing the system abruptly towards the origin.
In other words, in the dynamics (7) the retraction to the origin takes place
at discrete time epochs (rather than continuously) and happens ‘in a bang’
(rather than smoothly).

Since, in both systems, the intensity of the retrieving force is lin-
ear in the system’s level and the inflow process is ‘fed’ additively –
we refer to the motion governed by Eq. (8) as “standard Lévy-driven
Ornstein–Uhlenbeck dynamics”, and coin the motion governed by Eq. (7)
“Lévy-charged Ornstein–Uhlenbeck capacitor dynamics”.

3. THE TIME-TO-DISCHARGE

Assume that the capacitor is at the level x (x � 0), and set τx to be
the ‘time-to-discharge’, i.e., the first passage time to the level 0. With no
loss of generality we take X(0)=x and hence

τx = inf{t >0|X(t)=0} .

What is the distribution of τx?
Well, given the trajectory of the inflow process L= (L(t))t�0, we have

P (τx > t |L)

= exp
{
− ∫ t

0 r (x +L(s)) ds
}

= exp
{
−λxt − ∫ t

0 λ(t − s)L(ds)
}

.

Hence, using conditioning and Eq. (6) we obtain

P (τx > t)

=E [P (τx > t |L)]

= exp
{
−λxt − ∫ t

0 φ(λ(t − s))ds
}

.
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And, using Eq. (5), we can therefore conclude that

P (τx > t)= exp
{
−λxt − 1

λ
�(λt)

}
. (9)

The cycle duration: Charging cycles always start from the level x = 0
and hence their length – the cycle duration τ – equals τ0. Thus, using
Eq. (9), we obtain that the probability tails of the cycle duration τ (= τ0)
are given by

P (τ > t)= exp
{
−1

λ
�(λt)

}
. (10)

Equation (10), in turn, implies that the mean cycle duration is given by

E [τ ]= 1
λ

∫ ∞

0
exp

{
−1

λ
�(u)

}
du. (11)

Note that the mean cycle duration E[τ ] is always finite! (Indeed; the
characteristic Laplace exponent φ starts at the origin, and is monotone
increasing and concave. This implies that �(u) � cu for all u � u0, where
c and u0 are positive constants. This, in turn, implies that the integral on
the right-hand side of Eq. (11) is finite.)

3.1. Hazard Functions

Differentiating the logarithm of Eq. (9) yields

Hx(t) := F ′
x(t)

1−Fx(t)
=λx +φ(λt), (12)

where Fx(t), t � 0, denotes the distribution function of τx (Fx(t) =
P (τx � t)). The function Hx(t) is known – in applied probability and
reliability theory - as the Failure Rate or Hazard Function of the random
variable τx .(14–16) Its probabilistic interpretation is

lim
h→0

1
h

P (t <τx � t +h|τx > t)=Hx(t), (13)

i.e., Hx(t) is the local conditional rate of discharge, at time t , given that
there was no discharge up to time t . Since the characteristic Laplace expo-
nent φ(ω) is monotone increasing – so are the Hazard Functions Hx(t)
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(for all x �0). This implies that the distributions of the random variables
τx , x �0, satisfy the – so called – Increasing Failure Rate (IFR) property.
For a detailed treatment of distributions with IFR we refer the reader to
ref. 14. In particular, for τ0 (=the cycle duration) we have H0(t) = φ(λt)

and hence we can conclude that: up to the scaling factor λ, the Hazard
Function of the cycle duration equals the characteristic Laplace exponent of
the Lévy inflow.

3.2. Examples

We conclude this section with the distributions of cycle duration τ for
the Lévy inflow examples given in the end of Section 3.1.

1. Compound Poisson inflow with exponential jumps (φ(ω) =
aω/(ν +ω); a, ν >0)

P (τ > t)= (1+at/c)c

exp{at} , (14)

where c=aν/λ.

2. Gamma inflow (φ(ω)=a ln(1+ω/ν); a, ν >0)

P (τ > t)= exp{at}(
1+ at

c

)c+at
, (15)

where c=aν/λ.

3. Selfsimilar and deterministic inflows (φ(ω)=aωα; a >0, 0<α �1)

P (τ > t)= exp{− (t/c)1+α}, (16)

where c = (aλα/(1 + α))−1/(1+α). For these inflows we also have a simple
moment structure (m>0)

E [τm]=

(

1+ m
1+α

)
cm .

In the first two examples the resulting probability distributions of
the cycle duration (given in Eqs. (14) and (15)) are rather peculiar and
exceptional – although the Lévy inflow, in both cases, was fairly simple.
For selfsimilar Lévy inflows the resulting probability distribution of the
cycle duration is an enhanced exponential. Observe the counter-intuitive
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behavior implied form the structure of the probability tails given in
Eq. (16):

The wilder the charge inflow (i.e., the smaller the self-similarity index
α) – the slower the decay of the cycle duration. In particular, the cycle
duration with slowest decay is obtained in the limit α → 0, yielding the
exponential distribution. On the other hand, the cycle duration with fastest
decay is obtained at the parameter value α =1 (corresponding to the case
of deterministic inflows), yielding a probability distribution which follows,
asymptotically, a Gaussian decay.

4. CYCLE PEAKS

In this section, we explore the behavior of the cycle peak X(τ−). To
this end we use Lemma A.1 (see Appendix A) which implies that (ω�0)

limh→0
1
h

E [exp {−ωX(τ−)} · I{t <τ � t +h}]

= exp
{
− 1

λ
(�(ω+λt)−�(ω))

}
(φ(ω+λt)−φ(ω)) ,

(17)

where I{E} denotes the indicator function of the event E.
Using Eq. (17) we thus obtain that

E [exp {−ωX(τ−)}]=
∫ ∞

0
g(t;ω)dt,

where g(t;ω) is a shorthand notation of the ‘density’ appearing on the
right hand side of Eq. (17). A calculation of the last integral yields the
Laplace transform of the cycle peak X(τ−) (ω�0)

E [exp {−ωX(τ−)}]=1− φ(ω)
λ

exp
{

1
λ
�(ω)

}∫∞
ω

exp
{
− 1

λ
�(u)

}
du . (18)

In the vicinity of ω=0 the Laplace transform given in Eq. (18) admits
a particularly simple form: computing the limit of Eq. (18) as ω→0, while
making use of Eq. (11), gives

E [exp {−ωX(τ−)}] ∼
ω→0

1−E [τ ]φ(ω). (19)

Equation (19), in turn, implies that
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(i) The inflow process L has a finite mean if and only if the cycle
peak X(τ−) has a finite mean. Specifically

E [X(τ−)]=E [L(1)] E [τ ] . (20)

(ii) Due to Karamata’s Tauberian theorem (see, e.g., ref. 17), the dis-
tribution of the inflow process L is heavy-tailed with tails of order 0<α<

1 if and only if the distribution of the cycle peak X(τ−) is such. Specifi-
cally

P (L(1)> l) ∼
l→∞

a

lα
⇔ P (X(τ−)>x) ∼

x→∞
aE [τ ]

xα
. (21)

5. CHARGING CYCLES

In this section, we study the conditional trajectory of the capacitor
process during a charging cycle {X(s)|0� s <τ }, given that τ =T . To this
end we use Lemma A.2 (see Appendix A) which gives the infinite-dimen-
sional Laplace transform of the cycle’s trajectory: for any ‘nice’ test func-
tion ϕ(s), 0� s <T , we have

E
[

exp
{
− ∫ T

0 ϕ(s)X(ds)
}

|τ =T
]
= G(T ;ϕ)

G(T ;0)
, (22)

where the functional G is given by

G(T ;ϕ)= exp
{
− ∫ T

0 φ (ϕ(s)+λ(T − s)) ds
}∫ T

0 φ′ (ϕ(s)+λ(T − s)) ds .

The explicit computation of G(T ;ϕ), for a general test function ϕ, is not
possible. However, in (at least) two special cases – empirical averages and
conditional trendlines – explicit analytical formulae can be derived.

5.1. Empirical Average

Let X̄ = (X̄(t)
)
t�0 denote the empirical average of the capacitor pro-

cess X = (X(t))t�0, i.e.,

X̄(t)= 1
t

∫ t

0
X(s)ds.
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Then, taking ϕ(s) = θ(1 − s/T ), θ being a non-negative parameter, gives∫ T

0 ϕ(s)X(ds)=θX̄(T ). Hence, using Eq. (22) yields the conditional Laplace
transform of the empirical cycle average X̄(τ ), given that τ =T

E
[
exp{−θX̄(T )}|τ =T

]= exp
{
−T

�(λT +θ)
λT +θ

}
φ(λT +θ)

λT +θ

exp
{
−T

�(λT )
λT

}
φ(λT )

λT

. (23)

5.2. Conditional Trendline

Let 0 � t < T and set It to be the indicator function of the interval
(0, t). Taking ϕ(s) = θIt (s), θ being a non-negative parameter, and using
Eq. (22) we arrive at

E [X(t)|τ =T ]

= −∂
∂θ

E [exp {−θX(t)} |τ =T ]
∣∣
θ=0

= −∂
∂θ

E
[
exp

{
− ∫ T

0 θIt (s)X(ds)
}

|τ =T
]∣∣∣

θ=0

=−G(T ;0)−1 · ∂
∂θ

G(T ; θIt )
∣∣
θ=0 .

Calculating ∂
∂θ

G(T ; θIt )
∣∣
θ=0 we conclude that the conditional mean of

X(t), given that τ =T , is:

E [X(t)|τ =T ]= φ(λT )−φ(λ(T − t))

λ
− φ′(λT )−φ′(λ(T − t))

φ(λT )
. (24)

From Eq. (24) it is straightforward to deduce that the conditional
trendline function

m(t;T ) :=E [X(t)|τ =T ]

satisfies the following properties:

(i) it starts from the origin: m(0;T )=0;

(ii) it is monotone increasing (in the variable t);

(iii) it converges to a finite value as t →T if and only if L has a finite
mean – otherwise limt→T m(t;T )=∞.
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Note that even if the charge inflow L has infinite mean, the condi-
tional mean m(t;T ) is nevertheless finite for all 0� t <T (!), and diverges
only at the limit t →T .

5.3. The Conditional Distribution of the Cycle Peaks

Let us take a closer look at what happens at the end point t =T . Tak-
ing ϕ(s) ≡ θ (θ being a non-negative parameter) and calculating Eq. (22)
yields the conditional Laplace transform of the cycle peak X(τ−), given
that τ =T

E [exp{−θX(T −)}|τ =T ]

= exp
{
− 1

λ
(�(λT + θ)−�(λT )−�(θ))

}
φ(λT +θ)−φ(θ)

φ(λT )
.

(25)

If the inflow L has finite mean (i.e., if φ′(0)<∞) then differentiating Eq.
(25) and taking θ =0 yields m(T ;T ). However, if L has infinite mean then

E [exp{−θX(T −)}|τ =T ] ∼
θ→0

1− φ(θ)

φ(λT )
,

which, in turn (due to Karamata’s Tauberian theorem), implies that L is
heavy-tailed with tails of order 0<α <1 if and only if the conditional dis-
tribution of the cycle peak is such. Specifically

P (L(1)> l) ∼
l→∞

a

lα
⇔ P (X(T −)>x|τ =T ) ∼

x→∞
a/φ(λT )

xα
.

5.4. Conditioning on the Event {τ >T }
Analogous results can be derived given that τ >T (rather than τ =T ).

Indeed, the counterparts of Eqs. (22)–(25) are, respectively

E
[
exp

{
− ∫ T

0 ϕ(s)X(ds)
}

|τ >T
]
= exp

{
1
λ
�(λT )−∫ T

0 φ (ϕ(s)+λ(T −s)) ds
}

,

E
[
exp{−θX̄(T )}|τ >T

]= exp
{
−T

(
�(λT +θ)

λT +θ
− �(λT )

λT

)}
,

E [X(t)|τ >T ]= 1
λ

{φ(λT )−φ(λ(T − t))} ,

E [exp{−θX(T )}|τ >T ]= exp
{
− 1

λ
(�(λT + θ)−�(λT )−�(θ))

}
.
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In particular, we obtain that the conditional mean of X(T ), given that τ >

T , is given by the simple formula

E [X(T )|τ >T ]= 1
λ

φ(λT ).

Again, this conditional mean is finite for all Lévy inflows L! Further-
more, using Eqs. (12) and (13) we obtain the following connection between
the Hazard Function of the cycle duration τ and conditional mean
E [X(T )|τ >T ]

lim
h→0

1
h

P (T <τ �T +h|τ >T )=λE [X(T )|τ >T ] .

5.5. Example: Selfsimilar Lévy Inflows

We conclude this section with the example of a selfsimilar Lévy inflows
(i.e., φ(ω)=aωα, with a >0 and 0<α <1) for which the above formulae yield

E
[
exp{−θX̄(T )}|τ =T

]= exp
{−aT

1+α

(
(λT + θ)α − (λT )α

)}( λT

λT + θ

)1−α

,

E
[
exp{−θX̄(T )}|τ >T

]= exp
{−aT

1+α

(
(λT + θ)α − (λT )α

)}
,

E [X(t)|τ =T ]= aT α

λ1−α

(
1−

(
1− t

T

)α)
+ α

λT

((
1− t

T

)α−1

−1

)
,

E [X(t)|τ >T ]= aT α

λ1−α

(
1−

(
1− t

T

)α)
.

6. EVOLUTION AND EQUILIBRIUM

In this last section, we turn to study the stationary equilibrium and
evolution of the Lévy-charged Ornstein–Uhlenbeck capacitor system (7).
We tackle this issue using two different methodological approaches: a
Renewal Theory approach and a Markov Processes approach.

6.1. Equilibrium: Renewal Theory Analysis

Consider a capacitor system at equilibrium and assume, with no loss
of generality, that the system initiated at t =−∞. Let X∞ denote the sys-
tem’s stationary equilibrium level.
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The system’s discharge epochs form a renewal process with inter-
discharge intervals of length τ . Hence, the time elapsing from an arbitrary
time point (say t =0) till the next discharge epoch is not τ , but rather, the
residual lifetime τres of τ – whose distribution tails are given by (see, e.g.,
ref. 18)

P (τres >t)= 1
E [τ ]

∫ ∞

t

P (τ >u)du. (26)

Combining Eq. (26) and Eqs. (10) and (11) together we obtain that

P (τres >t)=
∫∞
λt

exp {−1/λ�(u)}du∫∞
0 exp {−1/λ�(u)}du

. (27)

On the other hand, the system’s level at an arbitrary time point (say
t =0) is X∞ and hence, using Eq. (9), we obtain that

P (τres >t)

= ∫∞
0 P (τx > t)FX∞(dx)

= ∫∞
0 exp

{
−λxt − 1

λ
�(λt)

}
FX∞(dx)

= exp
{
− 1

λ
�(λt)

}
E [exp{−λtX∞}] ,

(28)

where FX∞(x), x � 0, denotes the distribution function of X∞. Equating
Eqs. (27) and (28), while taking ω=λt , we conclude that:

The Laplace transform of the system’s stationary equilibrium distribu-
tion X∞ is given by (ω�0):

E [exp{−ωX∞}]= exp
{

1
λ

�(ω)

} ∫∞
ω

exp {−1/λ�(u)}du∫∞
0 exp {−1/λ�(u)}du

. (29)

Furthermore, from Eq. (29) we immediately obtain that

E [X∞]= 1∫∞
0 exp

{
− 1

λ
�(u)

}
du

= 1
λE[τ ]

, (30)

which is finite for all Lévy inflows L!
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Last, we note that combining Eqs. (18) and (29) together yields the
following functional connection between the Laplace transform of the sta-
tionary equilibrium X∞ and the Laplace transform of the cycle peak
X(τ−)

E[τ ]φ(ω) ·E [exp{−ωX∞}]+E [exp {−ωX(τ−)}]=1.

6.2. ‘Standard’ vs ‘Capacitor’ Ornstein–Uhlenbeck Dynamics

It is interesting to compare the equilibrium behavior of Ornstein–
Uhlenbeck capacitor dynamics (7) to the equilibrium behavior of the
corresponding ‘standard’ Ornstein–Uhlenbeck dynamics (8). The station-
ary equilibrium level of the ‘standard’ Ornstein–Uhlenbeck system (8) –
denote it by Y∞ – is given by the Laplace transform (see, e.g., ref. 19)

E [exp{−ωY∞}]= exp
{
−1

λ

∫ ω

0

φ(u)

u
du

}
.

This implies that E [Y∞]=λ−1E[L(1)], in the finite-mean case, and

P (L(1)> l) ∼
l→∞

a

lα
⇔ P (Y∞ >y) ∼

x→∞
a/(λα)

yα

in the heavy-tailed case (0<α <1).
The difference between the equilibrium behavior of the two Ornstein–

Uhlenbeck systems, (7) and (8), is hence sharp. The ‘standard’ Ornstein–
Uhlenbeck system preserves the mean and tail statistics of the inflow L.
The capacitor Ornstein–Uhlenbeck system, however, ‘smoothens out’ the
inflow in a much more powerful way: no matter how ‘heavy’ the proba-
bility tails of the inflow are – the equilibrium level of the system always
possesses a finite mean!

This is well illustrated by the example of selfsimilar Lévy inflows
where φ(ω)= aωα (with a > 0 and 0 <α < 1). The log-Laplace transforms
of L(1) and Y∞ are given, respectively, by

− ln E [exp{−ωL(1)}]=aωα

and

− ln E [exp{−ωY∞}]= a

λα
ωα.
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Hence, the equilibrium level Y∞ retains – up to a multiplicative constant
– the same distributional structure of the underlying Lévy driver L.
However, the distribution of equilibrium level of the capacitor Ornstein–
Uhlenbeck system differs dramatically. Indeed, calculating Eq. (29) for
φ(ω)=aωα gives the log-Laplace transform

− ln E [exp{−ωX∞}]= ln
(

α(cω1+α)

)
− cω1+α,

where c=a/{λ(1+α)} and where


α(s) := 1

(1/1+α)

∫ ∞

s

exp{−u}u1/(1+α)−1du (s �0).

The ‘taming’ of ‘standard’ Lévy-driven Ornstein–Uhlenbeck systems
(8) is investigated in ref. 19. Namely, the following question is addressed:
how can a system (8) driven by a heavy-tailed Lévy noise be ‘restrained’
so that the distribution of its equilibrium level will be more ‘tamed’ and
‘well-behaved’ than the distribution of its driving Lévy noise? The solution
given (and analyzed) in ref. 19 is to use a non-linear – rather than linear –
retrieving force. This results in a Lévy-driven Langevin system of the form

Y (dt)=−f (Y (t))dt +L(dt),

where f (y) is the magnitude of the retrieving force. Hence the ‘taming’ is
obtained by the use of a non-linear, continuous, and deterministic retrieving
force.

The ‘capacitor-type’ restraining (‘taming’) mechanism explored in this
manuscript is radically and oppositely different: it is linear, discontinuous,
and stochastic. Furthermore, this restraining mechanism is even more pow-
erful than the Langevin restraining mechanism. Indeed, if the driving Lévy
noise is heavy-tailed then ‘Langevin restraining’ would yield a finite-mean
equilibrium level only if the retrieving force f (y) is strong enough to over-
come the noise. However, as we demonstrated above, ‘capacitor restrain-
ing’ always results in finite-mean equilibrium level – no matter how ‘wild’
the Lévy noise is.

6.3. Evolution: Markovian Analysis

Given a ‘nice’ test function ϕ(x), x � 0, Dynkin’s formula (see, e.g.,
ref. 20) asserts that

E [ϕ(X(t))]=E [ϕ(X(0))]+
∫ t

0
E [(Lϕ)(X(s))]ds, (31)
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where L is the infinitesimal generator of the Markov process X= (X(t))t�0

(Lϕ)(x)= lim
h→0

E [ϕ(X(h))|X(0)=x]−ϕ(x)

h
.

Since our system is governed by the transitions (3), it is straightfor-
ward to deduce that

(Lϕ)(x)=λx(ϕ(0)−ϕ(x))+ lim
h→0

E [ϕ(x +L(h))]−ϕ(x)

h

the second term on the right-hand side being the infinitesimal generator4

of the Lévy inflow L. In particular, if we take ϕω(x) = exp{−ωx} (with
ω�0) and use Eq. (4) we have

(Lϕω)(x)=λx(1− exp{−ωx})−φ(ω) exp{−ωx}.

Hence, setting V (t;ω) :=E [exp{−ωX(t)}] to be the Laplace transform
of X(t), and m(t) :=E [X(t)] to be the mean of X(t), we obtain that

E [(Lϕω)(X(s))]=λm(t)+λ
∂V

∂ω
(t,ω)−φ(ω)V (t;ω).

Finally, using Dynkin’s formula (31), we can conclude that V (t;ω)

satisfies the partial differential equation (t, ω>0)

(
∂V

∂ω
− 1

λ

∂V

∂t

)
(t,ω)− φ(ω)

λ
V (t;ω)=−m(t), (32)

with the initial condition V (0;ω) = E [exp{−ωX(0)}] and the boundary
condition V (t;0)=1.

The solution of the partial differential equation (32) is given by the
convolution

V (t;ω)= exp
{

1
λ
�(ω)

}(
1− ∫ ω

0 exp
{
− 1

λ
�(u)

}
m
(
t + ω−u

λ

)
du
)

. (33)

4The infinitesimal generator of the Lévy inflow L admits the representation

lim
h→0

E [ϕ(x +L(h))]−ϕ(x)

h
=
∫ ∞

0
(ϕ(x +u)−ϕ(x)) J (du),

where J (du) is the jump measure (Lévy measure) of the Lévy inflow L. For further details
the readers are referred to Skorokhod(7).
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In particular, taking t →∞ in Eq. (33) gives

E [exp{−ωX∞}]= exp
{

1
λ
�(ω)

}(
1−E [X∞]

∫ ω

0 exp
{
− 1

λ
�(u)

}
du
)
, (34)

which, in turn, yields the stationary equilibrium solution (29) (indeed; tak-
ing ω→0 gives Eq. (30) which, after substituting back into Eq. (34), yields
Eq. (29)).

6.4. Mean and Auto-correlation

From Eq. (33) the following implicit convolution equation for the
mean function m(t)=E [X(t)] is obtained:

∫ t

0 exp
{
− 1

λ
�(λs)

}
m(t − s) ds

=1− exp
{
− 1

λ
�(λt)

}
E [exp{−λtX(0)}] .

(35)

Indeed; taking t = 0 in Eq. (33), and then setting ω/λ = t and using the
change of variable u/λ= s yields Eq. (35).

Furthermore, an analogous implicit convolution equation for the
system’s auto-correlation function C(t) = E [X(0)X(t)], at equilibrium, is
derived

∫ t

0 exp
{
− 1

λ
�(λs)

}
C (t − s) ds

=E [X∞]
(

1− exp
{
− 1

λ
�(λt)

}
+φ(λt)

∫∞
t

exp
{
− 1

λ
�(λs)

}
ds
)

.

(36)

We explain
Set mx (t)=E [X(t)|X(0)=x] and note that: (i) using conditioning, the

auto-correlation function C(t) is given by

E [X(0)X(t)]

=E [X(0)E [X(t)|X(0)=x]]

= ∫∞
0 xmx (t)FX∞(dx),

(37)

where FX∞(·) denotes the distribution function of the stationary equilib-
rium level X∞; (ii) using Eq. (35) we have

∫ t

0 exp
{
− 1

λ
�(λs)

}
mx (t − s) ds =1− exp

{
− 1

λ
�(λt)

}
exp{−λtx} . (38)
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Now; multiplying Eq. (38) by x and integrating with respect to the distri-
bution function FX∞(·) gives

∫ t

0 exp
{
− 1

λ
�(λs)

}
C (t − s) ds

=E [X∞]+ exp
{
− 1

λ
�(ω)

}
∂

∂ω
E [exp{−ωX∞}]

∣∣∣
ω=λt

.
(39)

Finally, calculating the right hand side of Eq. (39) (using Eq. (29)), yields
Eq. (36).

7. CONCLUSIONS

We introduced a model of stochastic capacitor systems with ran-
dom charging and discharging mechanisms. The charging mechanism is an
inflow with stationary, independent, and non-negative valued increments –
i.e., a one-sided Lévy process (Lévy subordinator). The discharging mech-
anism is Markovian, with a rate depending linearly on the capacitor’s
level. Discharging drops the capacitor’s level to zero, right after which the
stochastic charging cycle begins anew.

Since the inflow is Lévy, and since the Markovian rate is linear (in
the capacitor’s level), we coined these systems “Lévy-charged Ornstein–
Uhlenbeck capacitors”. This is in analogy to ‘standard’ Lévy-driven Orn-
stein–Uhlenbeck systems: systems with a Lévy inflow as above, and with
a deterministic retrieving mechanism – acting continuously in time and
‘pushing’ the system back to the origin – whose magnitude is linear in the
system’s level.

Our investigation of Lévy-charged Ornstein–Uhlenbeck capacitors
began with the computation of the distribution of the capacitor’s time-
to-discharge (given the system’s initial charging level). We then turned to
study various random quantities associated with the capacitors’ charging
cycles, including their: duration; peak height; empirical average; and, con-
ditional trendline and peak (conditioned on the duration of the charging
cycle). We concluded with the analysis of the capacitors’ stationary equi-
librium system-level. In our investigation we used probabilistic techniques
from the theories of Lévy, Markov, and renewal processes.

The study unveiled two rather unexpected features of Lévy-charged
Ornstein–Uhlenbeck capacitor systems

• The distribution of the cycle duration can turn out to be peculiar
and exceptional (even in cases where the underlying Lévy inflow is simple),
and its behavior can be counterintuitive (as in the case of selfsimilar Lévy
inflow).
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• The stationary equilibrium system-level always admits a finite
mean – however ‘wild’ the Lévy inflow is. (The same is to be said about
the conditional trendline during a charging cycle.)

The finite-mean property is a key feature of Lévy-charged Orn-
stein–Uhlenbeck capacitors, sharply distinguishing them from ‘standard’
Lévy-driven Ornstein–Uhlenbeck systems – for which the equilibrium
system-level admits a finite mean if and only if the underlying Lévy inflow
has a finite mean.

The finite-mean property also implies that it is possible to ‘restrain’
systems with ‘wild’ Lévy inflow using the proposed capacitor-type dynam-
ics (where the retrieving mechanism is stochastic, discontinuous, and lin-
ear), rather than by using Langevin-type dynamics (where the retrieving
mechanism is deterministic, continuous, and non-linear). Moreover, capac-
itor-type ‘restraining’ turns out to be more potent (and analytically more
tractable) than Langevin-type ‘restraining’.

APPENDIX A

We set

G(t;ω,ϕ)=exp
{
−∫ t

0 φ(ω+ϕ(s)+λ(t −s))ds
}∫ t

0 φ′(ω+ϕ(s)+λ(t −s))ds ,

where t, ω�0 and ϕ(s), s �0, is a ‘nice’ test function.

Lemma A.1. ∀ω�0 and ∀‘nice’ test function ϕ(s), s �0, we have:

limh→0
1
h

E
[
exp

{
−ωX(τ−)−∫ τ−

0 ϕ(s)X(ds)
}
·I{t <τ � t +h}

]
=λG(t;ω,ϕ) ,

where I{E} denotes the indicator function of the event E.

Note that, in particular, Lemma A.1 implies that the probability den-
sity function of cycle duration τ is given by exp

{
− 1

λ
�(λt)

}
φ(λt) – in

agreement with Eq. (10).

Proof. Fix 0<h<<1, and note that

P (t <τ � t +h|L)

	 exp
{
− ∫ t

0 r (L(s)) ds
}

r(L(t))h

= exp
{
− ∫ t

0 λ(t − s)L(ds)
}

λL(t)h.
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Hence, fixing (ω,ϕ) and using conditioning, we obtain

E
[
exp

{
−ωX(τ−)− ∫ τ−

0 ϕ(s)X(ds)
}

· I{t <τ � t +h}
]

=E
[
exp

{
−ωL(t)− ∫ t

0 ϕ(s)L(ds)
}

·P (t <τ � t +h|L)
]

	E
[
exp

{
−ωL(t)− ∫ t

0 ϕ(s)L(ds)− ∫ t

0 λ(t − s)L(ds)
}

λL(t)
]
·h

=−λ ∂
∂ω

E
[
exp

{
−ωL(t)− ∫ t

0 ϕ(s)L(ds)− ∫ t

0 λ(t − s)L(ds)
}]

·h

=−λ ∂
∂ω

E
[
exp

{
− ∫ t

0 (ω+ϕ(s)+λ(t − s))L(ds)
}]

·h

=−λ ∂
∂ω

exp
{
− ∫ t

0 φ (ω+ϕ(s)+λ(t − s)) ds
}

·h

=λG(t;ω,ϕ) ·h.

(A.1)

Finally; dividing Eq. (A.1) by h, and taking h→0 concludes the proof.

An immediate corollary of Lemma A.1 is

Lemma A.2. ∀ω�0 and ∀ ‘nice’ test function ϕ(s), s �0, we have

E
[

exp
{
−ωX(τ−)− ∫ τ−

0 ϕ(s)X(ds)
}

|τ = t
]
= G(t;ω,ϕ)

G(t;0,0)
. (A.2)

Proof. Fix 0<h<<1, and note that the conditional expectation

E
[
exp

{
−ωX(τ−)− ∫ τ−

0 ϕ(s)X(ds)
}

|t <τ � t +h
]

equals

E
[
exp

{
−ωX(τ−)− ∫ τ−

0 ϕ(s)X(ds)
}

· I{t <τ � t +h}
]

P (t <τ � t +h)
.

Taking h→0 and using A.1 concludes the proof.
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